If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+6x=42
We move all terms to the left:
8x^2+6x-(42)=0
a = 8; b = 6; c = -42;
Δ = b2-4ac
Δ = 62-4·8·(-42)
Δ = 1380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1380}=\sqrt{4*345}=\sqrt{4}*\sqrt{345}=2\sqrt{345}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{345}}{2*8}=\frac{-6-2\sqrt{345}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{345}}{2*8}=\frac{-6+2\sqrt{345}}{16} $
| 36=4m+8 | | 598=1.6x+30 | | (50=2x) | | (3x-1)°=(4x-10)° | | 10x+5=3(5x7) | | 2(-3x+5)8x=2x+10 | | M1=(4x-10)° | | –5p+6=–4p | | 10a/3=6+4a | | 0.5e=6 | | 5-12x+8x=-15 | | 2a−123=6+4a | | 2(4x-1)=3x+13 | | (5y+17)=(6y+13) | | –7k=5−7k | | 4.5x+49=20.25+7x | | z−329=913 | | y-28=53 | | 0.1+x=10 | | 3(x-4)=3(x-8) | | 4/5b−9=3 | | 5(6p-3)-2=2(15p-11)+5 | | 8−4xx=4x= | | 3(4x-5)=(2+3) | | 18g-15=12-20g | | 95=11(2w+4) | | 0.2+2x=20 | | 3x=4=12 | | 3(4y-1)=5(2y+3) | | 12.25*40+8.00x=642 | | 15X5y=50 | | 7(x-2)=3(2x+7) |